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1 Introduction

Recently there has been much effort directed towards the study of M2-branes (for a review
see [1]). Particular interest has surrounded the attempt to formulate a Lagrangian that is
capable of describing the low energy dynamics of multiple M2-branes. This work began
with the efforts of Bagger and Lambert [2]-[4](see also Gustavson [5]). The original Bagger-
Lambert theory is a 3-dimensional N/ = 8 supersymmetric field theory, based on a novel
algebraic structure; the so-called 3-algebra. A 3-algebra is a vector space with basis T,
which satisfies a triple product. In [3], the triple-product was required to satisfy two
conditions. The first was that it satisfied the fundamental identity (which can be expressed
as a condition on the structure constants). The second was that the structure constants f “bcd



be real and antisymmetric in a, b, c. Bagger and Lambert were able to construct a Chern-
Simons Lagrangian for their theory by defining a trace form h% which acts on the 3-
algebra. For h® and f“bcd real, gauge invariance implies that focd = f“bcehe‘i is totally
antisymmetric. When the metric is positive definite, it has been shown [7]-[9] that there is
essentially one unique example in which f2%°? oc ¢2%d_ In [10] and [11] it was shown that this
theory describes two M2-branes in an R®/Zs orbifold background. It is possible to consider
the case of a Lorentzian signature metric and this has been done in for example [12]-[21],
however the status of this theory is still somewhat unclear (see also [22]). For related work,
including higher derivative corrections to BLG theory, see for example [23]-[27].

Another possibility is to look for theories with fewer supersymmetries. In [28] the most
general N/ = 4 super-conformal Chern-Simons theory was constructed. In [29], ABJM
constructed an AN/ = 6 Chern-Simons theory with U(N) x U(N) gauge group and SO(6)
R-symmetry, and claimed that the theory describes N M2-branes in a C*/Z; orbifold
background. In the limit in which the number of branes, N, and the Chern-Simons level
k are large, with A = N/k fixed, the theory admits a dual geometric description given by
AdS4 x CP3. The action for this theory was derived from a superspace perspective in [30],
and the supersymmery of the action was shown explicitly in [31]. Motivated by the work
of ABJM and [32], Bagger and Lambert derived the general form for a three-dimensional
scale-invariant field theory with A/ = 6 supersymetry, SU(4) R-symmetry and a U(1) global
symmetry [33]. This was achieved by relaxing the constraint on the structure constants.
They showed that for a specific class of 3-algebra one recovers the N/ = 6 theory of [29].

The original motivation of Bagger and Lambert was to write down a theory capable of
reproducing the Basu-Harvey equation as a BPS equation. The energy bound correspond-
ing to this particular BPS configuration should appear in the superalgebra of the theory as
a central charge term. This was found to be the case for the N' = 8 Bagger-Lambert theory
n [34] (See also [35] for space-time superalgebra). For work on BPS configurations and
M-brane bound states of the N' = 8 theory see [36]-[39]. One would expect similar results
for the N' = 6 theory of ABJM. It was shown in [40-42] that the ABJM theory admits
fuzzy S% and fuzzy-funnel BPS solutions. For an alternative derivation of the Basu-Harvey
equation see [43].

In this paper we will compute the extended worldvolume superalgebra for the gener-
alised N/ = 6 Bagger-Lambert theory. For a particular choice of 3-algebra we are able to
derive the worldvolume superalgebra of the ABJM theory with central charge terms. We
find that the central charge corresponding to the half-BPS fuzzy funnel configuration of
the ABJM theory appears as a diagonal element of the superalgebra. We also derive the
general BPS equations of the N/ = 6 Bagger-Lambert theory.

The paper is organised as follows. In the next section we will briefly review the N’ = 6
Bagger-Lambert construction and its relation to the ABJM theory. In section 3 we will
explicitly calculate the superalgebra associated with the A/ = 6 Bagger-Lambert theory.
In section 4 we will derive the ABJM superalgebra using the result of section 3. In section
5 we will derive the general BPS equations of the Bagger-Lambert theory. Finally we will
provide some concluding remarks in section 6. In the appendix we outline our conventions
and include calculational details.



2 N = 6 Bagger-Lambert theory

In this section we will briefly review the N' = 6 construction of [33] and its relation to the
ABJM theory of [29]. A 3-algebra is defined as a vector space with basis 7% , a=1... N,
endowed with a triple product

[T, 7% T = oo, 1. (2.1)

Here we follow [33] and take the 3-algebra to be a complex vector space and only demand
that the triple product be antisymmetric in the first two indices. Furthermore the f“béd
are required to satisfy the following fundamental identity,

YRR VAR R T AR AR (22)

In order to construct a Lagrangian it is necessary to define a trace form on the 3-algebra
which provides a notion of an inner product, namely

h% = Tr(T?, T"). (2.3)

Gauge-invariance of the Lagrangian requires that the metric defined by (2.3) be gauge

invariant. In order for this to be true it can be shown [33] that the structure constants
fabéd

must satisfy
fabEJ _ f*EJab. (24)
In other words complex conjugation acts on f“bEJ as
(fabEJ)* _ f*chd _ fcdaB. (2.5)
Given this information Bagger and Lambert were able to construct the following Lagrangian
L=—D'Z4D,Z2 — ipA Dyt aq — V + Lo
— if NG baa 2P Zpe + 2 NG B2y Zae (2.6)
i =7 - 1 o _
- §€ABCDf abeddyB 70 7P — §€ABCDf <o) acbBaZcaZ s
with the potential given by

2 _
V= gT%dDngD (2.7)
where
_ _ 1 _ _ 1 _ _
Y6 = yabe, 76 7P 7, — 555 e, zE 7P Zpe + 55}3? YA AN A (2.8)

and the twisted Chern-Simons term Log is given by
1 LU abéd 2 acd pgefb
Leos = 55 f AﬂébaVA)\cza + gf gf AuBaAVJcA)\fe : (29)

The Zf are four complex 3-algebra valued scalar fields with A =1,2,3,4,. Their complex
conjugates are written as Z4; = (Z;‘)*. We write the fermions as 14, and their complex



conjugates as ¥ = (¢ 44)*. Note that the act of complex conjugation raises and lowers
the A index and interchanges a <> a. When the A index is raised it means that the
corresponding field transforms in the 4 of SU(4) and a lowered index field transforms in
the 4. The covariant derivative is defined by D,Z5 = 9,24 — [1“6 JZ4. Tt follows that
Dy Z zg = 0uZ g — AZEJZAE. Supersymmetry requires that D,ﬂ/}df‘ = ,ﬂ/}df‘ — fl;égwé and
Dypag — Alf s¥ac. The gauge field kinetic term is of Chern-Simons type and thus does
not lead to propagating degrees of freedom. The above Lagrangian is invariant under the

following supersymmetry transformations
023 = ie"Pyp,
a0 = —"DyZy eap — [ 25 2 Zocean + [, 25 Zy Zacecp (2.10)
0A,C 4= —i€apyuZivg f b+ iy, Z s oy
up to a surface term (See appendix B). The supersymmetry parameters e 4p are in the 6 of
SU(4). They satisfy the reality condition e4? = %aABCD ecp. The supersymmetry algebra

closes into a translation plus a gauge transformation. As shown in [33], the f®° generate
the Lie algebra G of gauge transformations. In particular if the Lie algebra G is of the form

G = @10 (2.11)
where G, are commuting subalgebras of G, then
fabcd ZWAZ ta ad t)\)b67 (2.12)
where the ¢ span a u(N) representation of the generators of Gy and the w) are arbitrary
constants. This form of f2%°@ allows one to rewrite the Lagrangian (2.6) as

L=—=Te(D"Za,DuZ") —iTr(p* A" Dyipa) =V + Leg
—iTe(PA, [Wa, ZB; Zg]) + 2iTr (A [¢B,ZB'ZA]) (2.13)

+ Seanco (@, (20, 27507)) = SeABOP T (2, [, Vs Z)),
where now
V= §Tr(TgD, TE,), (2.14)
with
TGP =29, ZP; Zg] - —6B[ZE 7Pz ]+%6§[ZE,ZC;ZE]. (2.15)

The equivalence of (2.13) and (2.6) can be verified by expanding the fields Z4, )4 in terms
of the generators 7% and defining the trace form as in (2.3). For example

Te(¢4, [ha, Z8; Zp)) = Te(@ATY, [P 4T, ZET?; ZpeT7)
= 0P Z ZpeTe (T, [T, T, T9))
= A4 28 Zpe . (2.16)



In [33] it was shown that for a particular choice of triple product one is able to recover
the N = 6 Lagrangian of ABJM written in component form [29, 30]. Given two complex
vector spaces Vi and Vs of dimension N1 and N» respectively one may consider the vector
space A of linear maps X : V7 — V5. A triple product may be defined on A as

[(X,Y;Z] = \NXZ'Y —YZTX) (2.17)

where § denotes the transpose conjugate and A is an arbitrary constant. The inner product
acting on this space may be written as

Tr(X,Y) = tr(XTY). (2.18)

With this choice of 3-algebra, the Lagrangian (2.13) takes the form of the ABJM theory
Lagrangian presented in [30]. In the next section we will calculate the superalgebra for the
N = 6 Bagger-Lambert theory and express the central charges in terms of 3-brackets. We
can then make use of (2.17) and (2.18) to derive the ABJM central charges.

3 N = 6 Bagger-Lambert superalgebra

In this section we will calculate the superalgebra associated with the general N' = 6 Bagger-
Lambert Lagrangian. We will follow the method outlined in [34]. Given the invariance of
the Lagrangian under the supersymmetry variations (2.10), Noether’s theorem implies the
existence of a conserved supercurrent J#. The supercharge is the spatial integral over the
worldvolume coordinates of the zeroth component of the supercurrent. Since we know
that the supercharge is the generator of supersymmetry transformations and that the
infinitesimal variation of an anticommuting field is given by 6® « {Q, ®} we can write

/ a5 Tl = (QL.QNE (3.1)

In order to make use of (3.1) in the form presented, we will have to re-write the parameters

€Ap appearing in the Bagger-Lambert theory in terms of a basis of 4 x 4 gamma matrices,

ean =< (Thy), (3:2)
with I = 1,...6. The ¢ are carrying a suppressed worldsheet spinor index and represent
the N’ = 6 SUSY generators. The gamma matrices are antisymmetric (I’II4 B = —FIB 4) and
satisfy the reality condition

~ 1
TAB ABCDTI I
"7 =ge Fop = —(ap)™ (3.3)
Furthermore they satisfy!
PLPIBC 4 DJ FIBC _ 174G (3.4)
'One explicit realisation in terms of Pauli matrices [41] is given by IMM=0® 12, 2= —ios ® o3, =
1092 ®O’1,F4 = —01 ®O’2,F5 = 03 ®O’2,F6 = —11lo ® 092.



We note that the 4 x 4 matrices I'! act on a different vector space to the 2 x 2 matrices y*
which are defined as world volume gamma matrices. The supercurrent can be calculated
by the usual Noether method. In general one has

oL
JH=——0p—VH (3.5)
(Oup)
where ¢ represents all the fields appearing in the Lagrangian and £ = 9,V*. For the
Bagger-Lambert theory the supercurrent can be written as

Ty = 1T = Te(60 A ) + Tr(69 7., ba), (3.6)
where Ji is the component supercurrent which appears in (3.1). For future reference we
write the fermion supersymmetry variations as

Spa = —Thpy'D,ZPe! — Nie!
A = —TIABg D 75— NTAL!
syt =TIABy1D, Zge! — N1Ae! (3.7)
Spa =T gy D, 75 — Ni&
with

Ni =Thp(2, 2% Zc] = Tipl2°, 275 Za); (3.8)

NIA =TIAB( 7, 7, 29 — TP Z0, Zp; 24). (3.9)
We have deliberately written these variations in terms of the general 3-bracket introduced
in the last section. This will result in an expression for the superalgebra in terms of 3-
brackets. The benefit of this formalism is that one can easily derive the ABJM superalgebra
by choosing a particular representation of the 3-bracket. The supersymmetry variation of
the zeroth component of the supercurrent is computed in appendix C. Since we are only
interested in bosonic backgrounds we set the fermions to zero. The result is

P A —— 25”T£’y“5“] + 25”‘/1705‘]
+ 261J(Tr(DiZBa [ZD? ZB7 ZD]) - Tr(DiZBa [ZDa ZB, ZD])elj’yjeJ
15D, 2B, D Z0)A 7
PG (T (D024, (27, 2% Zc)) + TH(D 24, [ 20, Z4: 27))e”
+TPUD(T(DI 2P, [ 2, Zpy 27Y) — Te(DiZp, (274, Z5; Zc)))eA e’

—TEEID (129, 28, 26), [ Zg, Zr; Z4)’
EF(IJ ([ZAaszzE] [Z07ZF720])8J
+r“WJﬂu 2l |25, Zp; Z€))<”,

where we have defined

CD(1J - -
FAB( ) _ rl,1/CP 4 [ICDpd .

= A[IJ ~7A ~ A
FD[ ]:FEEFJ E_pl EF{)E

—~

3.10)
3.11)

—~



In order to determine the superalgebra from this expression we need to integrate 6J%7
over the spatial worldvolume coordinates, and pull off the supersymmetry parameters 7,
remembering that for Majorana spinors & = 7' C. We know that f dQUTB = P, so we see
that the first term above will give us the usual momentum term. The other terms will form

the central charges. We can write the superalgebra as

{QL, Q) = — 26" (P, (+#C)ap + Zi(V C)ap — Vi(1°C)ap)

C[1J
~ T3 N(28(Clas + 281" Cas) (3.12)
EF(1J i
+ 05 (ERR Chas + ZER(1°Chap)
where «, 3 are spinor indices and i = z', 22 are the spatial coordinates of the worldvolume.

The central charges are given by

Z, = / d?oTe(D; Zp, (2P, 28, Zp)) — Te(D; 25, [ Zp, Zp; ZP])e¥ (3.13)
zB = / d?oTr(D; ZB, D Z¢)e" (3.14)
Z8y = / d*o(Tr(DoZa, (25, 24 Z6)) + Te(Do 24, [ Ze, Za; ZP)) (3.15)
28, = / PoTr(D;Z5, |25, Zr; Z4)) — Te(Di Zr, |22, ZP; Z5])eV (3.16)

zeE :/dQUTr([ZA,ZB;ZC],[ZE,ZF;ZC]) — (29,25, Z0), 1 Zg, Zr; Z7))
—Te([Z4, 25, ZE), [ Zc, Zp; Z€)). (3.17)

These equations represent the central charges of the extended N = 6 Bagger-Lambert the-
ory. For the specific 3-bracket realisation (2.17), the Bagger-Lambert theory is equivalent
to the ABJM theory. We will see that when we derive the ABJM central charges, Z;,
Zégi can be written as surface integrals. In other words these two terms will represent
topological charges in the algebra. In the next section we determine the corresponding

ABJM central charges.

4 N =6 ABJM superalgebra

In this section we will use the result of the previous section to write down the ABJM
central charges. We will use the particular form of 3-bracket defined in (2.17) to map the
central charge terms of the general Bagger-Lambert theory to the ABJM theory. This
will work in the same way that the Bagger-Lambert Lagrangian is mapped to the ABJM
Lagrangian. The structure of the superalgebra presented in (3.12) remains unchanged.
Only the central charge terms are affected by the 3-bracket prescription. Firstly we define
Tr(X,Y) = tr(XTY) and then we write the 3-bracket as [X,Y;Z] = XZ'Y —YZTX. In
order to emphasise the change from the Bagger-Lambert to ABJM picture we will relabel
our fields as Z4" — X4 and Z4 — X 4. This matches the conventions of [31]. A simple



calculation results in the following central charge terms
Z; = / PotrD;( XPXpXPXp — XpXBXpXP) (4.1)
zE = / dotr(D;XPD; X)e" (4.2)
ZE, = / Potr(DoX4(XBXo XA — XAX0XB) - Dy XA XcXPBX 4 — XaXP X))
ZEE, = / PotrDy(XBXpXAXp)e¥ (4.3)
zaB — 4 / Potr( XX XPXp XXy — XPXp XM X XCXp — XpXOX0))  (4.4)

We see that Z; and Zgﬁ ; take the form of surface integrals. These terms correspond to
topological terms characterizing half-BPS vacuum configurations. In [37] the superalgebra
of the N/ = 8 Bagger-Lambert theory was expressed in terms of three types of central
charge; Zry, Zirgkr and Zrjgp. It appears that for the N = 6 theory the analogues of
these charges are Z5, Zégi and Z4B. We refer the reader to [37] for more details on the
interpretation of these central charge terms. Note that the superalgebra may be re-written
in terms of trace, anti-symmetric and symmetric traceless parts. In other words we may

write the superalgebra as
5(1J Al
{qu Qé} = 5UXaﬁ + Zéﬁ ) + Z([xﬁ} (4-5)

where X3 is a singlet, Zé;‘l) is symmetric traceless and Z o[zlﬁJ] antisymmetric in I, J respec-

tively. Explicitly we have

4 .
Xap = _2Pu(’7ﬂc)aﬁ - gzi(’VZC)aﬁ,

> 2 |

Zai = (Fggmzﬁﬂ B §5uzi> (V' C)ag + (T ZAE + 2617V1) (1°C) g

71J Cc[1J

Z([JB} = —T5(28,Cap + ZE(1°C)ap). (4.6)

It is interesting at this stage to observe what happens when we act with d7; on the su-

peralgebra. In this case Fg[l‘” = 0 since it is antisymmetric in I, J and so Zg and ZCB70

)

disappear from the algebra. Similarly Zgﬁ‘] = ( since it is symmetric traceless. This can

be confirmed by using the fact that

51 TEET) Tl PIBF | IEFDL  _ gsEE (4.7)

Thus the only term that survives is the trace part X,3. We can therefore write

51{QL, Q3} = —12P,(7"C)ap + 8tr/d2aDi(XAXAXBXB — XAX4XBXpB)eij (v C)ap-
(4.8)

We see that the trace of the algebra contains a single central charge term, namely the
one-form central charge Z;. It turns out that this charge corresponds to the energy of



the BPS Fuzzy-Funnel configuration calculated in [42]. The ABJM BPS equations can be
obtained by combining the kinetic and potential terms in the Hamiltonian and rewriting the
expression as a modulus squared term plus a topological term. The squared term tells us the
BPS equations and the topological term tells us the energy bound of the BPS configuration
when the BPS equations are satisfied. In [42] the ABJM potential was written as

4 2
V=" (12228 28 — 2B 2,24 - WAWLZB + ZBW WA

k2

+ |WAWWE —WBW WA — ZAZ,WE + WBZ,24?) (4.9)
167>

+ =2 tr(|eaceBPWEZEWD |2 + |eACepp 2B W ZP ).

k2

where here Z4 and W4 are the upper and lower two components respectively of the 4
component complex scalar X“. The first two lines correspond to D-term potential pieces
whereas the last line corresponds to F-term potential pieces (from the superspace per-
spective). In [42] the potential and kinetic terms were combined in two different ways,
depending on whether the F-term or D-term potential is used in conjunction with the ki-
netic term. This leads to two sets of BPS equations. For the case in which W4 = 0 the
scalar part of the Hamiltonian only contains D-term contributions and takes the form
A, 2T B A A B
0 2%+ —(Z°ZpZ"* — Z7ZpZ>)

2
H = [ dx'dst
[ asane(fo.z+ 2 )

+ %tr@s(ZAZAZBZB — 742,78 2p), (4.10)

2

where ° = s. As usual, the first line gives the BPS equation

2
8,24 + %(ZBZBZA — 7472578) =0, (4.11)
and the second line gives the energy of the system when the BPS equation is satisfied
E= %tr/dsdmlas(ZAZAZBZB — 242,28 7p). (4.12)

We see that the form of this expression exactly corresponds with the central charge term
appearing in (4.8) (when W4 = 0). Thus we see that the physical information correspond-
ing to the energy bound of the fuzzy funnel configuration appears in the trace expression
of the algebra, and that all the other terms vanish when the trace is taken.

5 Bagger-Lambert BPS equations

In this section we would like to consider the BPS equations of the N/ = 6 Bagger-Lambert
Theory. We begin by considering the case in which two of the complex scalars are zero
and look at the BPS equation resulting from di) = 0 as outlined in [41]. Re-writing the
expression for d1 4 in terms of 3-brackets, and assuming a vanishing gauge field, we demand
that

S = Y10, Z%ap + (29,24 Zclean + (2°, 2P Zplecp = 0. (5.1)



We will assume that Z3 = Z% = 0 and the remaining scalar fields are functions of 22 = s.
We thus arrive at the following two equations

V02 a1y = [2°, 2" Zolera, (5.2)
’)/28822621 = [Zl, ZQ; 21]621. (53)
Given y2€12 = €12 we obtain the BPS equation of the general BL theory
0,24 = (28,24, Zp). (5.4)
Substituting the expression (2.17) for the 3-bracket we find
2 _ _

8,24 = %(ZBZ;ZA — 747}, 7P), (5.5)
where we have identified A = 2. This is the result of [41]. The general BPS equation may
also be derived by considering the scalar Hamiltonian when Z3 = Z4 = 0. In this case the
Bagger-Lambert potential simplifies and is proportional to Tr([Z4, ZB; Zg|,[Z 4, Z5; ZP)).
It follows from the usual Bogomoly'ni trick that the BPS equation is given by (5.4). In [42]
a solution to the BPS equation (5.5) was presented. The general procedure for finding a

solution is to the consider the ansatz in which the complex scalar fields separate into an
s-dependent and s-independent part,

A _ A _ v
AR f(S)G ’ f(S) - 47‘1’8’ (56)
Looking at (5.5) we see that the G4 satisfy
G = GPaLeh - aralLah. (5.7)

This equation is solved in [40]. In [42] the solution is interpreted as describing a fuzzy
S3/Zy. One might ask if it is possible to find a general solution corresponding to the
general BPS equation (5.4). Following the same procedure one might use an ansatz similar
to (5.6). The matrices G4 would then satisfy

G = [GP,G4; Gl (5.8)

In [33] only one class of examples of 3-bracket were given; it would be interesting to
investigate the possibility of other realisations of 3-bracket and consequently other solutions

o (5.8). So far we have only considered the situation in which half the scalar fields are set
to zero. In this case the potential takes a simple form and there is a single BPS equation.
We would like to consider the BPS equations of the Bagger-Lambert theory for the case in
which all scalar fields are non-zero. The scalar Hamiltonian takes the form

_ 92 _
H= /dxldsTr(BsZA,asZA) + gTr(TgD,TgD). (5.9)
We can write this as a sum of squares,
1 2 _
H = /dmldsTr 0,24 — %gABCDTgD + Tr|[2C, 28, Z0))? + T (5.10)

,10,



This leads to the following set of BPS equations

1
024 — B TP =0 (5.11)
V3
(2%, 28, Zc) = 0. (5.12)
Writing out (5.11) explicitly in terms of the component scalars we find expressions of the
form
9,2t = —Z2Z3Z —Z4ZQZ —Z4Z3Z
s \/g[ ] \/g[ 3] \/g[ 2]
0, 7% = —Z3Z4Z —21232 —21242
s \/g[ 1] \/g[ 4] \/g[ 3]
0,7 = —24212 —22242 —22212
s \/g[ ] \/g[ 1] \/g[ 4]
A —[Zl, 7% 73| = —[23, 71 Zy) = [23, Z?: 7). (5.13)

Sl

ﬁ

Note that if we choose to set half the scalar fields to zero then any term involving the

Bl

epsilon tensor will vanish and we are left with a trivial set of constraints, namely 9,24 =
[Z2C,ZB; Zc] = 0. Alternatively we can re-write (5.10) as

H= /dwldsTr|8 A VA A | 3Tr|eAB pYGP2+ Ty (5.14)

which leads to the following BPS equations
0,24 —[ZP, 24, Zp] = 0 (5.15)
BT8P = 0. (5.16)

For the case in which half the scalars are set to zero we see that (5.16) vanishes and
that (5.15) exactly corresponds to the BPS equation derived by setting di) = 0. It is worth
mentioning that we could have written the Hamiltonian as

2 1 2
H=3 /dmlds §eCDBA<3$ZA —YGP| + 13, (5.17)

in which case we would have a single set of BPS equations of the form
P 0,24 —27YGP = 0. (5.18)

However it is not clear how to extract (5.4) for the case in which half the scalars are zero.

6 Conclusion and discussion

In this paper we calculated the extended worldvolume superalgebra of the N = 6 Bagger-
Lambert Theory. With a particular choice of 3-bracket we were able to derive the ABJM
superalgebra. We found that the central charge corresponding to the half-BPS fuzzy funnel
configuration of the ABJM theory appears as a diagonal element of the superalgebra. It
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would be interesting to study the off-diagonal central charge terms and provide a physical
interpretation. It may be possible to re-write the superlgebra in a neater form by using the
equations of motion (as was done for the ' = 8 in [34]). This may simplify the structure
of the central charge terms allowing for easier interpretation. It is interesting to note that
Z,; exactly corresponds with the topological term appearing in [42] when the kinetic term
is combined with the F-term potential piece. Furthermore it appears that Zégi has the
same structure as the topological term corresponding to the D-term configuration. Thus
it would seem that these two central charge terms characterise the topological information
corresponding to the two sets of BPS equations appearing in [42].

In this paper we have also derived two sets of BPS equations for the general N' = 6
Bagger-Lambert theory. For the case in which half the scalars are set to zero we recover
the half-BPS result derived by setting dyp = 0. It would be interesting to try and find
solutions to these equations in the case where more than half the scalar fields are active.
Related to this is the question of whether its possible to write the Bagger-Lambert scalar
Hamiltonian as

H= /dxldsTr(asZA — "B PV T (6.1)
with the condition that
_ 2 _
9" Bopaar” T (YGP Y Eg) = gTT(TgD, Yép) (6.2)

where T is a topological term. If this constraint is satisfied then we have a set of BPS

equations of the form
024 — kg"Bop TGP =0 (6.3)

where A, B =1,...4. Tt is interesting to note that the constraint (6.2) is analogous to the
situation encountered when considering M5-brane calibrations [44, 45]. In the case of the
N = 8 Bagger-Lambert theory the constraint takes the form

1
—grrrgrporTr((X7, X5, X [XP, X9 x 1)) = Te(x!, x7, x5, (X1, X7, X5).

3!

(6.4)
The gryi 1 are related to the calibrating forms of the cycle on which the M5-brane wraps
and are therefore completely antisymmetric in their indices. For the case in which only half
the scalar fields are activated it is possible to solve the constraint by writing gryxr. = €rJKL-
This choice corresponds to a fuzzy-funnel configuration in which multiple M2-branes expand
into a single M5-brane, and is described by the standard Basu-Harvey equation. For the
situation in which more scalars are activated, additional constraints arise which have to be
imposed alongside the Basu-Harvey equation. It would be interesting to see whether the
results of [44] can be derived from the ABJM theory. We leave this for future work.
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A Conventions and useful information

In what follows we will need to make use of the following information. The supersymmetry
parameters of the N = 6 ABJM theory transform in the 6 representation of SU(4). We
can write the susy parameter € 4p in terms of a basis of 4 x 4 gamma matrices as

eap =€ (T'yp), (A.1)
with [ = 1,...6. The gamma matrices are antisymmetric (T'} 53 = —T'L ,) and satisfy the
following relation

Pl RIBC | P PIBC _ g5174C (A.2)
where 1
PIAB = ZeABODLL, — ()", (A3)

We note that the 4 x 4 matrices I'! act on a different vector space to the 2 x 2 matrices
~* which are defined as world volume gamma matrices. These two types of gamma matrix
commute with one another. It is also important to note the following relations

I pIOP = 2658 = —2(550F — 656%) (A.4)
Pl FIED _ 65D, (A5)
Acting with e4PMN e ppo on both sides of (A.4) one can show that
riebpl = —26G0. (A.6)
It therefore follows that
D F1OP 4 PICPLL . 45GP (A7)
T4 TP —TICPTL L =0 (A.8)

We will also need the following identity in what follows

- - - 1 .
[l FAC 4 FIACTS Tl FAC | : GACDE, oo DL TIFG

1 -
ziﬁﬁhﬁﬂﬂz2y%g (A.9)

and therefore
LT/ = 4517 (A.10)

Note that in obtaining the last line of (A.9) we made use of (A.2) and the epsilon tensor
identity

eAPEe  ppa =+ 050R6E + 696865 + 6508 6E
— 056805 — 6908 6E — 5500 6E (A.11)

Similarly we have

- - - 1 -
A A A
Dhpl ¢ =TT p = 20 pTAC — SopT D TC. (A.12)
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It is possible to derive identities involving e sp based on the relations between the basis
gamma matrices I'/. In [33] Bagger and Lambert make use of the following identities

1
§€1CD%620D5§ = &%, eap0 — &y, e1B0 (A.13)

and

2¢(“erpp — 265 %1pp = + & Ferppdp — & Feippon
— & erppdG + & FeppdG
=+ EfEE2BE(SlC) — E?EQBE(;IC) (A.14)
— &P eoppid + e Feppop.
Both of these identities can be re-written in terms of identities involving the Majorana

spinors €/ and the gamma matrices IT'.

B Determination of surface term

In this appendix we show explicitly how to calculate the surface term V# associated with
the Lagrangian (2.6). Only certain parts of the variation of the Lagrangian contribute to
the surface terms, namely those kinetic and coupling terms which upon variation contain

derivatives. Lets look at each part of the Lagrangian in turn.

B.1 Kinetic term

Liinetic = —D"Z§ Dy Zgt — g 4Dyt aq.- (B.1)
Varying the kinetic terms one has
1 2
SLpinetic = — NP DH(6Z45) Dy 22 + h?’amf iZ4¢D, 72
i 4
~ DMZ4D,(6Z2) + h¥DFZ \ 16 A, ¢ 22 (B.2)
5 6 7

— iGANY Dy aq — 104 Do aa) + A OAL

Inserting the supersymmetry transformations into the above one finds the following terms
1) = —iD*)PD, Z2e 45
2) = +Z'EAB’YMDMZI?ZBJZCET/JAafabEJ — WPy Zf ZezDu ZS " ean
3) = —ie"B D' Z4 D, s,
4) = —ie"PAPD, Z0e ZpgZE W aaf U + Py, DF ZogZA 78 f<Me . (B.3)
5) = —ie?B D, 2P Dyt aa — ie4P Zoe Z g 284 Dyt aa S

- Z’ECD'VMDuwAaZfZDBZCJfCG%
6) = —ig V"Y' DDy 2 epa — WYV Dyu(Z§ 24 Zee) [ epa

— i DW(Z5 2P Zae) f " ecp.
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We don’t include 7) above as this term contains no derivatives and therefore won’t con-

tribute to the surface terms.

B.2 Coupling terms
['coupling = ['(1) + ['(2)

where
‘C(l _Zfadew2l4¢AaZ[,BZBc + 2 fadeT,Z)d T,Z)BCLZbBZAC.
L) = _5ABCDfade7/)2?¢c zZ$ 7z — ABCDdea%Ac?/)BdZCaZDb

We will tackle each in turn

2

1 2

A\

8Ly = — i fU0 M 40 ZE Zpe —i fU A 40 ZE e
3 4

A A\

+ 20 P50, ZP Z e +2i fUN A6 g 2P Zac

Inserting the supersymmetry transformations into this we have

1) = —ie" 09Dy L oo 2 aa ™
2) = —muyq)zczfz f e
3) = 2ie* Py D, Z piZ 4 25 e f0
4) ¢d’y D ZCZb cfabcd CB

For 6L ) we find

5 6

3L 2) ——eABCDf“bcdawﬁwc 787P 4 - eABcpfabcdwﬁéwc 78 7P
7 8

1 - - 1 i o
- §6ABCDf A5 achpaZealpy — §5ABCDf Ao a6 BaZcaZ py

Inserting the supersymmetry variations one finds
5) = Seco DS 2DV § it D 27 6D
6) = %Zzg’YuDuZAEZgaDbeEJGCD + i&fW“DMZDaZaCZIPfabEJEA
7) = %EQD’Y“DMZCBZCaZDiﬂ/JBddeaB + iEBC’Y“DuZ(PZCaZDWBddeaB

i - - - . _ _
8) = 5Yacy" DuZ* ZeaZpp “ €Y + ihacy" DuZy ZeaZpp [N,

(B.7)

(B.10)

AB

where in determining the above expressions we made use of the reality condition ¢*” =

%eABCD ecp -We also found the following epsilon tensor identity useful

PP e spra =+ 0R0F00 + 6P6GOE + 05050

— 086508 — 655500 — 685568,

,15,

(B.11)



B.3 Terms in &8

We now gather all those terms of the form 45,

5L =+ i Py, D' ZE ZpaZcetbanf ™™ — ieP DF 294D bpa
— i Dy ZocZ i 28 Vaaf ™ — 1P Dy 2y Dot aa
— e 202 5a ZE A Db aa f U — iePA Dy naZL Z s Zogf P (B.12)
— i D, ZpgZocZs baaf ! + 2PV Dy D Zac 2 boa f
+ 170 D20 ZoaZpypaf “* + 2N D, 2P ZoaZpypaf
where in the last line we have combined terms in 7) and 8) by making use of the fact that

ECPytah gy = —1hpgy"e®P. All the terms of order ZZZ combine into two total derivatives.
Thus we are left with

0Le =+ Dy(ie' Py 2 ZacZpgbca [ — e P 2 ZpgZoe aaf ™)
— &8 DI 24D ybpa — i€ P D, 28 Y Dythag (B.13)

We can write these last two terms as a total derivative, plus a piece proportional to the
gauge field strength. Thus we finally arrive at

OLe =Dy (i€ P4 2 ZacZpbcal ™™ — i€ Py 25 ZpiZoctaal
— it DF 240 pa — ieP Dy 27" 4" aa) (B.14)
B.4 Terms in eyp
Gathering all the terms of the form €45 we find
0L = —iD"pP D, Z e s — iy DD, ZB epa
+ ip P, DP 20322 78 fete sy — ih P, Z{ 20Dy ZE [P e a
— AN D (25 2 Zoe) f7 — iy D25 7y Zac) f e (B.15)
— WG DY ZE 2P Zpe [P e + 2003 DuZE 2P Zacf " ecs
+ b2y D, ZacZE ZP [ e e + 2ipA4" D, Zpe ZE ZP [ e oo
A simple re-labeling of the indices reveals that all the terms containing ZZZ vanish iden-
tically leaving
6L = —iDMpPD, Z2 e + iy DD, ZB ean (B.16)
and we can re-write this as a total derivative
6Lc = D, (—ipPD,Z2 e 4) (B.17)

Combining the results of the previous two sub-sections we find,

0L = 6Lc+ 0L = O, V" (B.18)
with V# given by
VH = —ie' P DF ZGpa — 0P D Ziteap — i€ Dy ZH7 1 1) aa
— eyt ZE ZpgZoabaaf P+ e P ZE Z acZ o fU. (B.19)
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C Bagger-Lambert superalgebra calculations

In this section we calculate the supersymmetric variation of J%!. Given the supercurrent

expression (3.6) one finds

(a)
6J% = 4 Tr(T4 7471 %4* D, 2B, DPZC&“J) + Tr(TABT 4"4°4* D, Z 5, DpZC)
(®)
— Tr(T 57y"7°D, 28, NPTy — To(NATA9A 042 D, Zce?)
+ Tr(TIAB4740D, Zp, Nie”) + Tr(NIAFjC*yOfprpZCEJ) (C.1)
()
+ Tr(N4A0, NTAeT) 4 Tr(NTA~g, Ne?).

C.1 (a) terms
The (a) terms may be written as

FQBI:JAC_H:IACFJ )y ODOZB,DOZCEJ)
DL p07AC L DT )y Do ZB | D Zoe?)

DL pT7AC L TACT )y D 2B Do Zoe?)

I pT7AC L TIACT) )40 D, 28 D Ze”) (C.2)
Tl D7AC _ [LACTS Nyiin0 D, 7B D Zee).

|

=
AN TN TN N N
o T e T e

The first four terms can be further simplified by using the relation (A.9).

(a) = — 2017 Tr (4" Dy 2B, D° Zpe”) — 26!/ T (" D; 28, D' Zge”)
- 251JTY(’YiDQZB, DiZB&“J) — 251JTY(’yiDiZB, DQZB&“J) (03)
— Tr((Mhy 749 = T14°T 9 3)497°D; 27, D; Zce”).

C.2 (b) terms

The (b) terms may be written as

(b) =— 26" Tr(DiZB, (27,27, Zp)y°~'e”) + 26" T (D' 2P, [ Zp, Zp; ZP 17 y'e”)

(T pF4C 1 FIACT) ) 20, 25, 24, DiZee”)

o TI‘(( JC’D + FICDF )[ D7 ZA]")/ ~y ,Dz‘ZBEJ)

+ Te((Th gT7AC — T )27, 28, Zp), Do Zce?)

+Tr(( JAC FIACF )[ D] DOZB J) (04)
= Tr((Chpl7AC = T1AT )27, 27 Z4), DoZce”)

_ TI‘(( PJAC FIACFJ )[ ] DQZB J)
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The terms involving Dy can be greatly simplified by using (A.14). After a bit of rearrange-
ment and relabeling we can write the (b) terms as

(b) =+ 28T (D' Zp, (2P, 2B, Zp)eie!) — 26" Te(D ZP | [Zp, Z; ZP)eVe”)

+ TS5 DI ZE [ Ze, Zp; 2447y - Te(U R DiZp (24, 2P, Ze]etinie?)
~ T \DoZe. (2P, 29 Za)E7) - (@ py D02 24, 20y ZP)T),  (C5)
where
A i S P (C.6)
P = Tl AF — TIAPTL (C.7)

and we have used the fact that in 3 dimensions 7% o< €. We have also used the fact that

AOnf = _giin012 qnd A0120T — o7

C.3 (c) terms

The (c) terms may be written as

(c) =—26""Tx((2°, 25, Zc), [ ZF, ZB; ZF]))’
— PN ((29, 28, Z¢), [ ZE, Zr; 24’
-4 (24, 2P Zs), | Ze, 2y 2€))” (C.8)
+ 5Ny (24, 25, Z0), (28, Zi; 2€)e”.

We can make use of the fact that the potential is
2 - - 1 _ _
V= gTr([ZC, ZP: 75\, 20, Zp; ZP)) — gTr([ZB,ZD; Zp),[Zr, Zp; Z7)) (C.9)

to write (c) as

(¢) =—28"(V = W)’
~TEFIDTY(2C 25, Zc), | 2, 2y 24])”
B FEF ]J)Tr([ZA7zB’ ZE], (Zc, Zp; Z2€))e’ (C.10)
+Tiap (24, 275 Z6), 12, Zis 29))€7

where

2 L 4 L
Vi, = 5Tr([ZC,ZD; Zgl, | Zc, Zp; ZP]) - gTr([ZC, ZB:. 70,25, Z; Z%)) (C.11)
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c.4 4J°
We can combine (a), (b) and (c) terms
P A —— 25”T£’y“5“] + 25”‘/1708‘]
+206"(Tx(Di Zp, (27, 27 Zp)) — Te(D; 2", [ Zp, Zp; ZP])e I’
15" Te(D, 2B, D; Z0)~ 7
TSN Te(DoZa, (2P, 2% Zc)) + Te(Do 22, (Zc., Za; Z5)))e”
+rCD<”>( Tv(D'ZP,[Z¢, Zp; Z2)) — Te(D; Zp |22, 2P, Z¢)))einie”
—TEEID (129, 28, Z6), (28, Zr; Z7)’
_FEF(IJ ([ZA7ZB7ZE]7[Z07ZF7 ])aJ
+ DA Te((24, 2P Zc), [ 26, Zry Z2€))
where we have used
Too = Tr(DoZB, Dy Z5) + Te(D; ZP, D' Zp) + V; (C.12)
To; = TI“(DQZB,DZ‘ZB) —|—TI“(DZ‘ZB,D()ZB). (Cl?))

D Potential

In this appendix we show the equivalence of the Bagger-Lambert and ABJM potential.
The Bagger-Lambert potential is given by

V= %Tr(T%D, TB,) (D.1)
where
TP = (2°, 2P, Zp) - —5B[ZE A 53 (2, 7% Zg). (D.2)
We can define the inner product as
Tr(X,Y) = tr(XTY) (D.3)

where | denotes the transpose conjugate and tr denotes the ordinary matrix trace. Thus

(XGP)! = 1271, 2% 25) ~ 261271, 271, 24 + SOR12P, 29 2 (D)
Yp = Zc, Zp; Z7] - %53[21;, Zp; Z) + %55,[2];, Zo; 27, (D.5)
Making use of the above information one finds that
V- %Tr(T%D, TE,) (D.6)
= Zu((X5P) I T8p) (D7)
= ([ZD*, 2%, 24\ e, Z; 2] + 27, 2%, 2L 2, Zo ZB]) . (D)
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For the particular choice
[(X,V;Z) = \NXZ'Y - YZ'X) (D.9)

it was shown by Bagger and Lambert that the N = 6 ABJM potential is recovered. In-
serting (D.9) into (D.8) one finds

1, e - _ S _ _
V= A2tr< - gZETZEZCTZCZBTZB — gZCTZEZETZBZBTZC

4 _ _ _ _ _ _
— gZDTZBZCTZDZBTZC + 2ZDTZBZCTZCZBTZD>. (D.10)
Comparing with
47 14 B C 1 A B C
V= —otr( - s XXX XX Ko — S XaXAXpX T XX
4
— 5XAXBXCXAXBXC + 2XAXBXBXAXCXC> (D.11)

we see that the two expressions are equivalent given the redefinitions Z4t — X4 and
Zx— Xa, as well as \ = 27 /k.
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