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1 Introduction

Recently there has been much effort directed towards the study of M2-branes (for a review

see [1]). Particular interest has surrounded the attempt to formulate a Lagrangian that is

capable of describing the low energy dynamics of multiple M2-branes. This work began

with the efforts of Bagger and Lambert [2]–[4](see also Gustavson [5]). The original Bagger-

Lambert theory is a 3-dimensional N = 8 supersymmetric field theory, based on a novel

algebraic structure; the so-called 3-algebra. A 3-algebra is a vector space with basis T a,

which satisfies a triple product. In [3], the triple-product was required to satisfy two

conditions. The first was that it satisfied the fundamental identity (which can be expressed

as a condition on the structure constants). The second was that the structure constantsfabc
d
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be real and antisymmetric in a, b, c. Bagger and Lambert were able to construct a Chern-

Simons Lagrangian for their theory by defining a trace form hab which acts on the 3-

algebra. For hab and fabc
d real, gauge invariance implies that fabcd = fabc

eh
ed is totally

antisymmetric. When the metric is positive definite, it has been shown [7]–[9] that there is

essentially one unique example in which fabcd ∝ εabcd. In [10] and [11] it was shown that this

theory describes two M2-branes in an R
8/Z2 orbifold background. It is possible to consider

the case of a Lorentzian signature metric and this has been done in for example [12]–[21],

however the status of this theory is still somewhat unclear (see also [22]). For related work,

including higher derivative corrections to BLG theory, see for example [23]–[27].

Another possibility is to look for theories with fewer supersymmetries. In [28] the most

general N = 4 super-conformal Chern-Simons theory was constructed. In [29], ABJM

constructed an N = 6 Chern-Simons theory with U(N) × U(N) gauge group and SO(6)

R-symmetry, and claimed that the theory describes N M2-branes in a C
4/Zk orbifold

background. In the limit in which the number of branes, N, and the Chern-Simons level

k are large, with λ = N/k fixed, the theory admits a dual geometric description given by

AdS4×CP
3. The action for this theory was derived from a superspace perspective in [30],

and the supersymmery of the action was shown explicitly in [31]. Motivated by the work

of ABJM and [32], Bagger and Lambert derived the general form for a three-dimensional

scale-invariant field theory with N = 6 supersymetry, SU(4) R-symmetry and a U(1) global

symmetry [33]. This was achieved by relaxing the constraint on the structure constants.

They showed that for a specific class of 3-algebra one recovers the N = 6 theory of [29].

The original motivation of Bagger and Lambert was to write down a theory capable of

reproducing the Basu-Harvey equation as a BPS equation. The energy bound correspond-

ing to this particular BPS configuration should appear in the superalgebra of the theory as

a central charge term. This was found to be the case for the N = 8 Bagger-Lambert theory

in [34] (See also [35] for space-time superalgebra). For work on BPS configurations and

M-brane bound states of the N = 8 theory see [36]–[39]. One would expect similar results

for the N = 6 theory of ABJM. It was shown in [40–42] that the ABJM theory admits

fuzzy S3 and fuzzy-funnel BPS solutions. For an alternative derivation of the Basu-Harvey

equation see [43].

In this paper we will compute the extended worldvolume superalgebra for the gener-

alised N = 6 Bagger-Lambert theory. For a particular choice of 3-algebra we are able to

derive the worldvolume superalgebra of the ABJM theory with central charge terms. We

find that the central charge corresponding to the half-BPS fuzzy funnel configuration of

the ABJM theory appears as a diagonal element of the superalgebra. We also derive the

general BPS equations of the N = 6 Bagger-Lambert theory.

The paper is organised as follows. In the next section we will briefly review the N = 6

Bagger-Lambert construction and its relation to the ABJM theory. In section 3 we will

explicitly calculate the superalgebra associated with the N = 6 Bagger-Lambert theory.

In section 4 we will derive the ABJM superalgebra using the result of section 3. In section

5 we will derive the general BPS equations of the Bagger-Lambert theory. Finally we will

provide some concluding remarks in section 6. In the appendix we outline our conventions

and include calculational details.
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2 N = 6 Bagger-Lambert theory

In this section we will briefly review the N = 6 construction of [33] and its relation to the

ABJM theory of [29]. A 3-algebra is defined as a vector space with basis T a , a = 1 . . . N ,

endowed with a triple product

[T a, T b;T c̄] = fabc̄
dT

d. (2.1)

Here we follow [33] and take the 3-algebra to be a complex vector space and only demand

that the triple product be antisymmetric in the first two indices. Furthermore the fabc̄
d

are required to satisfy the following fundamental identity,

f efḡ
bf

cbā
d + f feā

bf
cbḡ

d + f∗ḡāf

b̄
f ceb̄

d + f∗āḡe

b̄
f cf b̄

d = 0. (2.2)

In order to construct a Lagrangian it is necessary to define a trace form on the 3-algebra

which provides a notion of an inner product, namely

hāb = Tr(T ā, T b). (2.3)

Gauge-invariance of the Lagrangian requires that the metric defined by (2.3) be gauge

invariant. In order for this to be true it can be shown [33] that the structure constants

fabc̄d̄ must satisfy

fabc̄d̄ = f∗c̄d̄ab. (2.4)

In other words complex conjugation acts on fabc̄d̄ as

(fabc̄d̄)∗ = f∗āb̄cd = f cdāb̄. (2.5)

Given this information Bagger and Lambert were able to construct the following Lagrangian

L = −DµZ̄a
ADµZ

A
a − iψ̄AaγµDµψAa − V + LCS

− ifabc̄d̄ψ̄A
d̄
ψAaZ

B
b Z̄Bc̄ + 2ifabc̄d̄ψ̄A

d̄
ψBaZ

B
b Z̄Ac̄ (2.6)

+
i

2
εABCDf

abc̄d̄ψ̄A
d̄
ψB

c̄ Z
C
a Z

D
b − i

2
εABCDf cdāb̄ψ̄AcψBdZ̄CāZ̄Db̄,

with the potential given by

V =
2

3
ΥCD

Bd ῩBd
CD (2.7)

where

ΥCD
Bd = fabc̄

dZ
C
a Z

D
b Z̄Bc̄ −

1

2
δC
Bf

abc̄
dZ

E
a Z

D
b Z̄Ec̄ +

1

2
δD
B f

abc̄
dZ

E
a Z

C
b Z̄Ec̄ (2.8)

and the twisted Chern-Simons term LCS is given by

LCS =
1

2
εµνλ

(

fabc̄d̄Aµc̄b∂νAλd̄a +
2

3
facd̄

gf
gef̄ b̄Aµb̄aAνd̄cAλf̄e

)

. (2.9)

The ZA
a are four complex 3-algebra valued scalar fields with A = 1, 2, 3, 4,. Their complex

conjugates are written as Z̄Aā = (ZA
a )∗. We write the fermions as ψAa and their complex

– 3 –
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conjugates as ψA
ā = (ψAa)

∗. Note that the act of complex conjugation raises and lowers

the A index and interchanges a ↔ ā. When the A index is raised it means that the

corresponding field transforms in the 4 of SU(4) and a lowered index field transforms in

the 4̄. The covariant derivative is defined by DµZ
A
d = ∂µZ

A
d − Ã c

µ dZ
A
c . It follows that

DµZ̄Ad̄ = ∂µZ̄Ad̄ − Ã∗c̄
µ d̄

Z̄Ac̄. Supersymmetry requires that Dµψ
A
d̄

= ∂µψ
A
d̄
− Ã∗c̄

µ d̄
ψA

c̄ and

DµψAd − Ã c
µ dψAc. The gauge field kinetic term is of Chern-Simons type and thus does

not lead to propagating degrees of freedom. The above Lagrangian is invariant under the

following supersymmetry transformations

δZA
a = iǭABψBa

δψAa = −γµDµZ
B
a ǫAB − fdbc̄

aZ
C
d Z

B
b Z̄Cc̄ǫAB + fdbc̄

aZ
C
d Z

D
b Z̄Ac̄ǫCD (2.10)

δÃ c
µ d = −iǭABγµZ

A
a ψ

B
b̄
f cab̄

d + iǭABγµZ̄Ab̄ψBaf
cab̄

d

up to a surface term (See appendix B). The supersymmetry parameters ǫAB are in the 6 of

SU(4). They satisfy the reality condition ǫAB = 1
2ε

ABCDǫCD. The supersymmetry algebra

closes into a translation plus a gauge transformation. As shown in [33], the fabc̄d̄ generate

the Lie algebra G of gauge transformations. In particular if the Lie algebra G is of the form

G = ⊗λGλ (2.11)

where Gλ are commuting subalgebras of G, then

fabc̄d̄ =
∑

λ

ωλ

∑

α

(tαλ)ad̄(tαλ)bc̄, (2.12)

where the tαλ span a u(N) representation of the generators of Gλ and the ωλ are arbitrary

constants. This form of fabc̄d̄ allows one to rewrite the Lagrangian (2.6) as

L = − Tr(DµZ̄A,DµZ
A) − iTr(ψ̄A, γµDµψA) − V + LCS

− iTr(ψ̄A, [ψA, Z
B ; Z̄B ]) + 2iTr(ψ̄A, [ψB , Z

B; Z̄A]) (2.13)

+
i

2
εABCDTr(ψ̄A, [ZC , ZD;ψB ]) − i

2
εABCDTr(Z̄D, [ψ̄A, ψB ; Z̄C ]),

where now

V =
2

3
Tr(ΥCD

B , ῩB
CD), (2.14)

with

ΥCD
B = [ZC , ZD; Z̄B ] − 1

2
δC
B [ZE, ZD; Z̄E ] +

1

2
δD
B [ZE, ZC ; Z̄E ]. (2.15)

The equivalence of (2.13) and (2.6) can be verified by expanding the fields ZA, ψA in terms

of the generators T a and defining the trace form as in (2.3). For example

Tr(ψ̄A, [ψA, Z
B ; Z̄B ]) = Tr(ψ̄A

d̄
T d̄, [ψAaT

a, ZB
b T

b; Z̄Bc̄T
c̄])

= ψ̄A
d̄
ψAaZ

B
b Z̄Bc̄Tr(T d̄, [T a, T b, T c̄])

= ψ̄A
d̄
ψAaZ

B
b Z̄Bc̄f

abc̄d̄. (2.16)

– 4 –
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In [33] it was shown that for a particular choice of triple product one is able to recover

the N = 6 Lagrangian of ABJM written in component form [29, 30]. Given two complex

vector spaces V1 and V2 of dimension N1 and N2 respectively one may consider the vector

space A of linear maps X : V1 → V2. A triple product may be defined on A as

[X,Y ;Z] = λ(XZ†Y − Y Z†X) (2.17)

where † denotes the transpose conjugate and λ is an arbitrary constant. The inner product

acting on this space may be written as

Tr(X,Y ) = tr(X†Y ). (2.18)

With this choice of 3-algebra, the Lagrangian (2.13) takes the form of the ABJM theory

Lagrangian presented in [30]. In the next section we will calculate the superalgebra for the

N = 6 Bagger-Lambert theory and express the central charges in terms of 3-brackets. We

can then make use of (2.17) and (2.18) to derive the ABJM central charges.

3 N = 6 Bagger-Lambert superalgebra

In this section we will calculate the superalgebra associated with the general N = 6 Bagger-

Lambert Lagrangian. We will follow the method outlined in [34]. Given the invariance of

the Lagrangian under the supersymmetry variations (2.10), Noether’s theorem implies the

existence of a conserved supercurrent Jµ. The supercharge is the spatial integral over the

worldvolume coordinates of the zeroth component of the supercurrent. Since we know

that the supercharge is the generator of supersymmetry transformations and that the

infinitesimal variation of an anticommuting field is given by δΦ ∝ {Q,Φ} we can write

∫

d2σδJI
0β = {QI

α, Q
J
β}ǭαJ (3.1)

In order to make use of (3.1) in the form presented, we will have to re-write the parameters

ǫAB appearing in the Bagger-Lambert theory in terms of a basis of 4× 4 gamma matrices,

ǫAB = εI .(ΓI
AB), (3.2)

with I = 1, . . . 6. The εI are carrying a suppressed worldsheet spinor index and represent

the N = 6 SUSY generators. The gamma matrices are antisymmetric (ΓI
AB = −ΓI

BA) and

satisfy the reality condition

Γ̃IAB =
1

2
εABCDΓI

CD = −(ΓI
AB)∗. (3.3)

Furthermore they satisfy1

ΓI
ABΓ̃JBC + ΓJ

ABΓ̃IBC = 2δIJδC
A . (3.4)

1One explicit realisation in terms of Pauli matrices [41] is given by Γ1 = σ2 ⊗ 12, Γ
2 = −iσ2 ⊗ σ3, Γ

3 =

iσ2 ⊗ σ1, Γ
4 = −σ1 ⊗ σ2, Γ

5 = σ3 ⊗ σ2, Γ
6 = −i12 ⊗ σ2.

– 5 –
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We note that the 4× 4 matrices ΓI act on a different vector space to the 2× 2 matrices γµ

which are defined as world volume gamma matrices. The supercurrent can be calculated

by the usual Noether method. In general one has

Jµ =
∂L

∂(∂µϕ)
δϕ− V µ (3.5)

where ϕ represents all the fields appearing in the Lagrangian and δL = ∂µV
µ. For the

Bagger-Lambert theory the supercurrent can be written as

Jµ = ε̄IJI
µ = Tr(δψ̄Aγµ, ψ

A) + Tr(δψ̄Aγµ, ψA), (3.6)

where JI
µ is the component supercurrent which appears in (3.1). For future reference we

write the fermion supersymmetry variations as

δψA = −ΓI
ABγ

µDµZ
BεI −N I

Aε
I

δψ̄A = −Γ̃IAB ε̄IγµDµZ̄B −N IAεI

δψA = Γ̃IABγµDµZ̄Bε
I −N IAεI (3.7)

δψ̄A = ΓI
AB ε̄

IγµDµZ
B
A −N I

Aε̄
I .

with

N I
A = ΓI

AB [ZC , ZB; Z̄C ] − ΓI
CD[ZC , ZD; Z̄A]; (3.8)

N IA = Γ̃IAB[Z̄C , Z̄B ;ZC ] − Γ̃ICD[Z̄C , Z̄D;ZA]. (3.9)

We have deliberately written these variations in terms of the general 3-bracket introduced

in the last section. This will result in an expression for the superalgebra in terms of 3-

brackets. The benefit of this formalism is that one can easily derive the ABJM superalgebra

by choosing a particular representation of the 3-bracket. The supersymmetry variation of

the zeroth component of the supercurrent is computed in appendix C. Since we are only

interested in bosonic backgrounds we set the fermions to zero. The result is

δJ0,I = − 2δIJT 0
µγ

µεJ + 2δIJV1γ
0εJ

+ 2δIJ (Tr(DiZ̄B, [Z
D, ZB; Z̄D]) − Tr(DiZ

B, [Z̄D, Z̄B ;ZD])εijγjεJ

− Γ
C[IJ ]
B Tr(DiZ

B,Dj Z̄C)εijγ0εJ

− Γ
C[IJ ]
B (Tr(D0Z̄A, [Z

B , ZA; Z̄C ]) + Tr(D0Z
A, [Z̄C , Z̄A;ZB]))εJ

+ Γ
CD(IJ)
AB (Tr(DiZ̄B, [Z̄C , Z̄D;ZA]) − Tr(DiZ̄D, [Z

A, ZB; Z̄C ]))εijγjεJ

− Γ
EF (IJ)
AB Tr([ZC , ZB ; Z̄C ], [Z̄E , Z̄F ;ZA])εJ

− Γ
EF (IJ)
AB Tr([ZA, ZB ; Z̄E ], [Z̄C , Z̄F ;ZC ])εJ

+ Γ
EF (IJ)
AB Tr([ZA, ZB ; Z̄C ], [Z̄E , Z̄F ;ZC ])εJ ,

where we have defined

Γ
CD(IJ)
AB = ΓI

ABΓ̃JCD + Γ̃ICDΓJ
AB; (3.10)

Γ̃
A[IJ ]
D = ΓI

DEΓ̃JAE − Γ̃IAEΓJ
DE . (3.11)

– 6 –
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In order to determine the superalgebra from this expression we need to integrate δJ0,I

over the spatial worldvolume coordinates, and pull off the supersymmetry parameters εJ ,

remembering that for Majorana spinors ε̄ = εTC. We know that
∫
d2σT 0

µ = Pµ so we see

that the first term above will give us the usual momentum term. The other terms will form

the central charges. We can write the superalgebra as

{QI
α, Q

J
β} = − 2δIJ (Pµ(γµC)αβ + Zi(γ

iC)αβ − V1(γ
0C)αβ)

− Γ
C[IJ ]
B (ZB

C,0(C)αβ + ZB
C (γ0C)αβ) (3.12)

+ Γ
EF (IJ)
AB (ZAB

EF,i(γ
iC)αβ + ZAB

EF (γ0C)αβ)

where α, β are spinor indices and i = x1, x2 are the spatial coordinates of the worldvolume.

The central charges are given by

Zi =

∫

d2σTr(DiZ̄B, [Z
D, ZB; Z̄D]) − Tr(DiZ

B, [Z̄D, Z̄B ;ZD])εij (3.13)

ZB
C =

∫

d2σTr(DiZ
B,DjZ̄C)εij (3.14)

ZB
C,0 =

∫

d2σ(Tr(D0Z̄A, [Z
B , ZA; Z̄C ]) + Tr(D0Z

A, [Z̄C , Z̄A;ZB ]) (3.15)

ZAB
EF,i =

∫

d2σTr(DiZ̄
B, [Z̄E , Z̄F ;ZA]) − Tr(DiZ̄F , [Z

A, ZB ; Z̄E ])εij (3.16)

ZCE
BA =

∫

d2σTr([ZA, ZB ; Z̄C ], [Z̄E , Z̄F ;ZC ]) − [ZC , ZB; Z̄C ], [Z̄E , Z̄F ;ZA])

− Tr([ZA, ZB ; Z̄E ], [Z̄C , Z̄F ;ZC ]). (3.17)

These equations represent the central charges of the extended N = 6 Bagger-Lambert the-

ory. For the specific 3-bracket realisation (2.17), the Bagger-Lambert theory is equivalent

to the ABJM theory. We will see that when we derive the ABJM central charges, Zi,

ZAB
EF,i can be written as surface integrals. In other words these two terms will represent

topological charges in the algebra. In the next section we determine the corresponding

ABJM central charges.

4 N = 6 ABJM superalgebra

In this section we will use the result of the previous section to write down the ABJM

central charges. We will use the particular form of 3-bracket defined in (2.17) to map the

central charge terms of the general Bagger-Lambert theory to the ABJM theory. This

will work in the same way that the Bagger-Lambert Lagrangian is mapped to the ABJM

Lagrangian. The structure of the superalgebra presented in (3.12) remains unchanged.

Only the central charge terms are affected by the 3-bracket prescription. Firstly we define

Tr(X,Y ) = tr(X†Y ) and then we write the 3-bracket as [X,Y ;Z] = XZ†Y − Y Z†X. In

order to emphasise the change from the Bagger-Lambert to ABJM picture we will relabel

our fields as ZA† → XA and Z̄A → XA. This matches the conventions of [31]. A simple

– 7 –
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calculation results in the following central charge terms

Zi =

∫

d2σtrDi(X
BXBX

DXD −XBX
BXDX

D) (4.1)

ZB
C =

∫

d2σtr(DiX
BDjXC)εij (4.2)

ZB
C,0 =

∫

d2σtr(D0XA(XBXCX
A −XAXCX

B) −D0X
A(XCX

BXA −XAX
BXC))

ZAB
EF,i =

∫

d2σtrDi(X
BXEX

AXF )εij (4.3)

ZAB
EF = 4

∫

d2σtr(XAXCX
BXFX

CXE −XBXEX
A(XCX

CXF −XFX
CXC)) (4.4)

We see that Zi and ZAB
EF,i take the form of surface integrals. These terms correspond to

topological terms characterizing half-BPS vacuum configurations. In [37] the superalgebra

of the N = 8 Bagger-Lambert theory was expressed in terms of three types of central

charge; ZIJ , ZiIJKL and ZIJKL. It appears that for the N = 6 theory the analogues of

these charges are ZB
C , ZAB

EF,i and ZAB
EF . We refer the reader to [37] for more details on the

interpretation of these central charge terms. Note that the superalgebra may be re-written

in terms of trace, anti-symmetric and symmetric traceless parts. In other words we may

write the superalgebra as

{QI
α, Q

J
β} = δIJXαβ + Z̃

(IJ)
αβ + Z̃

[IJ ]
αβ (4.5)

where Xαβ is a singlet, Z̃
(IJ)
αβ is symmetric traceless and Z̃

[IJ ]
αβ antisymmetric in I, J respec-

tively. Explicitly we have

Xαβ = −2Pµ(γµC)αβ − 4

3
Zi(γ

iC)αβ ,

Z̃
(IJ)
αβ =

(

Γ
EF (IJ)
AB ZAB

EF,i −
2

3
δIJZi

)

(γiC)αβ + (Γ
EF (IJ)
AB ZAB

EF + 2δIJV1)(γ
0C)αβ

Z̃
[IJ ]
αβ = −Γ

C[IJ ]
B (ZB

C,0Cαβ + ZB
C (γ0C)αβ). (4.6)

It is interesting at this stage to observe what happens when we act with δIJ on the su-

peralgebra. In this case Γ
C[IJ ]
B = 0 since it is antisymmetric in I, J and so ZB

C and ZB
C,0

disappear from the algebra. Similarly Z̃
(IJ)
αβ = 0 since it is symmetric traceless. This can

be confirmed by using the fact that

δIJΓ
EF (IJ)
AB = ΓI

ABΓ̃IEF + Γ̃IEF ΓI
AB = −4δEF

AB . (4.7)

Thus the only term that survives is the trace part Xαβ . We can therefore write

δIJ{QI
α, Q

J
β} = −12Pµ(γµC)αβ + 8tr

∫

d2σDi(XAX
AXBX

B −XAXAX
BXB)εij(γ

jC)αβ .

(4.8)

We see that the trace of the algebra contains a single central charge term, namely the

one-form central charge Zi. It turns out that this charge corresponds to the energy of
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the BPS Fuzzy-Funnel configuration calculated in [42]. The ABJM BPS equations can be

obtained by combining the kinetic and potential terms in the Hamiltonian and rewriting the

expression as a modulus squared term plus a topological term. The squared term tells us the

BPS equations and the topological term tells us the energy bound of the BPS configuration

when the BPS equations are satisfied. In [42] the ABJM potential was written as

V =
4π2

k2
tr(|ZAZ†

AZ
B − ZBZAZ

A −WAWAZ
B + ZBWAW

A|2

+ |WAWAW
B −WBWAW

A − ZAZAW
B +WBZAZ

A|2) (4.9)

+
16π2

k2
tr(|ǫACǫ

BDWBZ
CWD|2 + |ǫACǫBDZ

BWCZ
D|2).

where here ZA and WA are the upper and lower two components respectively of the 4

component complex scalar XA. The first two lines correspond to D-term potential pieces

whereas the last line corresponds to F-term potential pieces (from the superspace per-

spective). In [42] the potential and kinetic terms were combined in two different ways,

depending on whether the F-term or D-term potential is used in conjunction with the ki-

netic term. This leads to two sets of BPS equations. For the case in which WA = 0 the

scalar part of the Hamiltonian only contains D-term contributions and takes the form

H =

∫

dx1dstr

(∣
∣
∣
∣
∂sZ

A +
2π

k
(ZBZBZ

A − ZAZBZ
B)

∣
∣
∣
∣

2)

+
π

k
tr∂s(ZAZ

AZBZ
B − ZAZAZ

BZB), (4.10)

where x2 = s. As usual, the first line gives the BPS equation

∂sZ
A +

2π

k
(ZBZBZ

A − ZAZBZ
B) = 0, (4.11)

and the second line gives the energy of the system when the BPS equation is satisfied

E =
π

k
tr

∫

dsdx1∂s(ZAZ
AZBZ

B − ZAZAZ
BZB). (4.12)

We see that the form of this expression exactly corresponds with the central charge term

appearing in (4.8) (when WA = 0). Thus we see that the physical information correspond-

ing to the energy bound of the fuzzy funnel configuration appears in the trace expression

of the algebra, and that all the other terms vanish when the trace is taken.

5 Bagger-Lambert BPS equations

In this section we would like to consider the BPS equations of the N = 6 Bagger-Lambert

Theory. We begin by considering the case in which two of the complex scalars are zero

and look at the BPS equation resulting from δψ = 0 as outlined in [41]. Re-writing the

expression for δψA in terms of 3-brackets, and assuming a vanishing gauge field, we demand

that

δψB = γµ∂µZ
AǫAB + [ZC , ZA; Z̄C ]ǫAB + [ZC , ZD; Z̄B ]ǫCD = 0. (5.1)
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We will assume that Z3 = Z4 = 0 and the remaining scalar fields are functions of x2 = s.

We thus arrive at the following two equations

γ2∂sZ
1ǫ12 = [Z2, Z1; Z̄2]ǫ12, (5.2)

γ2∂sZ
2ǫ21 = [Z1, Z2; Z̄1]ǫ21. (5.3)

Given γ2ǫ12 = ǫ12 we obtain the BPS equation of the general BL theory

∂sZ
A = [ZB , ZA; Z̄B ]. (5.4)

Substituting the expression (2.17) for the 3-bracket we find

∂sZ
A =

2π

k
(ZBZ̄†

BZ
A − ZAZ̄†

BZ
B), (5.5)

where we have identified λ = 2π
k

. This is the result of [41]. The general BPS equation may

also be derived by considering the scalar Hamiltonian when Z3 = Z4 = 0. In this case the

Bagger-Lambert potential simplifies and is proportional to Tr([ZA, ZB; Z̄B ], [Z̄A, Z̄B ;ZB]).

It follows from the usual Bogomoly’ni trick that the BPS equation is given by (5.4). In [42]

a solution to the BPS equation (5.5) was presented. The general procedure for finding a

solution is to the consider the ansatz in which the complex scalar fields separate into an

s-dependent and s-independent part,

ZA = f(s)GA, f(s) =

√

k

4πs
, (5.6)

Looking at (5.5) we see that the GA satisfy

GA = GBG†
BG

A −GAG†
BG

B . (5.7)

This equation is solved in [40]. In [42] the solution is interpreted as describing a fuzzy

S3/Zk. One might ask if it is possible to find a general solution corresponding to the

general BPS equation (5.4). Following the same procedure one might use an ansatz similar

to (5.6). The matrices GA would then satisfy

GA = [GB , GA;GB ]. (5.8)

In [33] only one class of examples of 3-bracket were given; it would be interesting to

investigate the possibility of other realisations of 3-bracket and consequently other solutions

to (5.8). So far we have only considered the situation in which half the scalar fields are set

to zero. In this case the potential takes a simple form and there is a single BPS equation.

We would like to consider the BPS equations of the Bagger-Lambert theory for the case in

which all scalar fields are non-zero. The scalar Hamiltonian takes the form

H =

∫

dx1dsTr(∂sZ
A, ∂sZ̄A) +

2

3
Tr(ΥCD

B , ῩB
CD). (5.9)

We can write this as a sum of squares,

H =

∫

dx1dsTr

∣
∣
∣
∣
∂sZ

A − 1√
3
εAB

CDΥCD
B

∣
∣
∣
∣

2

+ Tr|[ZC , ZB; Z̄C ]|2 + T1. (5.10)
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This leads to the following set of BPS equations

∂sZ
A − 1√

3
εAB

CDΥCD
B = 0 (5.11)

[ZC , ZB; Z̄C ] = 0. (5.12)

Writing out (5.11) explicitly in terms of the component scalars we find expressions of the

form

∂sZ
1 =

1√
3
[Z2, Z3, Z̄4] =

1√
3
[Z4, Z2, Z̄3] =

1√
3
[Z4, Z3; Z̄2]

∂sZ
2 =

1√
3
[Z3, Z4; Z̄1] =

1√
3
[Z1, Z3, Z̄4] =

1√
3
[Z1, Z4; Z̄3]

∂sZ
3 =

1√
3
[Z4, Z1; Z̄2] =

1√
3
[Z2, Z4, Z̄1] =

1√
3
[Z2, Z1; Z̄4]

∂sZ
4 =

1√
3
[Z1, Z2; Z̄3] =

1√
3
[Z3, Z1, Z̄2] =

1√
3
[Z3, Z2; Z̄2]. (5.13)

Note that if we choose to set half the scalar fields to zero then any term involving the

epsilon tensor will vanish and we are left with a trivial set of constraints, namely ∂sZ
A =

[ZC , ZB ;ZC ] = 0. Alternatively we can re-write (5.10) as

H =

∫

dx1dsTr|∂sZ
A − [ZB, ZA; Z̄B ]|2 +

1

3
Tr|εAB

CDΥCD
B |2 + T2 (5.14)

which leads to the following BPS equations

∂sZ
A − [ZB, ZA; Z̄B ] = 0 (5.15)

εAB
CDΥCD

B = 0. (5.16)

For the case in which half the scalars are set to zero we see that (5.16) vanishes and

that (5.15) exactly corresponds to the BPS equation derived by setting δψ = 0. It is worth

mentioning that we could have written the Hamiltonian as

H =
2

3

∫

dx1ds

∣
∣
∣
∣

1

2
εCD

BA∂sZ
A − ΥCD

B

∣
∣
∣
∣

2

+ T3, (5.17)

in which case we would have a single set of BPS equations of the form

εCD
BA∂sZ

A − 2ΥCD
B = 0. (5.18)

However it is not clear how to extract (5.4) for the case in which half the scalars are zero.

6 Conclusion and discussion

In this paper we calculated the extended worldvolume superalgebra of the N = 6 Bagger-

Lambert Theory. With a particular choice of 3-bracket we were able to derive the ABJM

superalgebra. We found that the central charge corresponding to the half-BPS fuzzy funnel

configuration of the ABJM theory appears as a diagonal element of the superalgebra. It
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would be interesting to study the off-diagonal central charge terms and provide a physical

interpretation. It may be possible to re-write the superlgebra in a neater form by using the

equations of motion (as was done for the N = 8 in [34]). This may simplify the structure

of the central charge terms allowing for easier interpretation. It is interesting to note that

Zi exactly corresponds with the topological term appearing in [42] when the kinetic term

is combined with the F-term potential piece. Furthermore it appears that ZAB
EF,i has the

same structure as the topological term corresponding to the D-term configuration. Thus

it would seem that these two central charge terms characterise the topological information

corresponding to the two sets of BPS equations appearing in [42].

In this paper we have also derived two sets of BPS equations for the general N = 6

Bagger-Lambert theory. For the case in which half the scalars are set to zero we recover

the half-BPS result derived by setting δψ = 0. It would be interesting to try and find

solutions to these equations in the case where more than half the scalar fields are active.

Related to this is the question of whether its possible to write the Bagger-Lambert scalar

Hamiltonian as

H =

∫

dx1dsTr(∂sZ
A − gAB

CDΥCD
B )2 + T (6.1)

with the condition that

gAB
CDg

FG
AE Tr(ΥCD

B , ῩE
FG) =

2

3
Tr(ΥCD

B , ῩB
CD) (6.2)

where T is a topological term. If this constraint is satisfied then we have a set of BPS

equations of the form

∂sZ
A − κgAB

CDΥCD
B = 0 (6.3)

where A,B = 1, . . . 4. It is interesting to note that the constraint (6.2) is analogous to the

situation encountered when considering M5-brane calibrations [44, 45]. In the case of the

N = 8 Bagger-Lambert theory the constraint takes the form

1

3!
gIJKLgIPQRTr([XJ ,XK ,XL], [XP ,XQ,XR]) = Tr([XI ,XJ ,XK ], [XI ,XJ ,XK ]).

(6.4)

The gIJKL are related to the calibrating forms of the cycle on which the M5-brane wraps

and are therefore completely antisymmetric in their indices. For the case in which only half

the scalar fields are activated it is possible to solve the constraint by writing gIJKL = εIJKL.

This choice corresponds to a fuzzy-funnel configuration in which multiple M2-branes expand

into a single M5-brane, and is described by the standard Basu-Harvey equation. For the

situation in which more scalars are activated, additional constraints arise which have to be

imposed alongside the Basu-Harvey equation. It would be interesting to see whether the

results of [44] can be derived from the ABJM theory. We leave this for future work.
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A Conventions and useful information

In what follows we will need to make use of the following information. The supersymmetry

parameters of the N = 6 ABJM theory transform in the 6 representation of SU(4). We

can write the susy parameter εAB in terms of a basis of 4 × 4 gamma matrices as

εAB = ǫI .(ΓI
AB), (A.1)

with I = 1, . . . 6. The gamma matrices are antisymmetric (ΓI
AB = −ΓI

BA) and satisfy the

following relation

ΓI
ABΓ̃JBC + ΓJ

ABΓ̃IBC = 2δIJδC
A (A.2)

where

Γ̃IAB =
1

2
εABCDΓI

CD = −(ΓI
AB)∗. (A.3)

We note that the 4 × 4 matrices ΓI act on a different vector space to the 2 × 2 matrices

γµ which are defined as world volume gamma matrices. These two types of gamma matrix

commute with one another. It is also important to note the following relations

ΓI
ABΓ̃ICD = −2δCD

AB = −2(δC
Aδ

D
B − δC

Bδ
D
A ) (A.4)

ΓI
ABΓ̃IBD = 6δD

A . (A.5)

Acting with εABMNεCDPQ on both sides of (A.4) one can show that

Γ̃ICDΓI
AB = −2δCD

AB . (A.6)

It therefore follows that

ΓI
ABΓ̃ICD + Γ̃ICDΓI

AB = −4δCD
AB (A.7)

ΓI
ABΓ̃ICD − Γ̃ICDΓI

AB = 0 (A.8)

We will also need the following identity in what follows

ΓI
ABΓ̃AC + Γ̃IACΓJ

AB = ΓI
ABΓ̃AC +

1

4
εACDEεABFGΓI

DEΓ̃JFG

=
1

2
δC
BΓI

FGΓ̃JFG = 2δIJδC
B . (A.9)

and therefore

ΓI
FGΓ̃JFG = 4δIJ . (A.10)

Note that in obtaining the last line of (A.9) we made use of (A.2) and the epsilon tensor

identity

εACDEεABFG = + δC
Bδ

D
F δ

E
G + δC

F δ
D
G δ

E
B + δC

Gδ
D
B δ

E
F

− δC
Bδ

D
G δ

E
F − δC

F δ
D
B δ

E
G − δC

Gδ
D
F δ

E
B (A.11)

Similarly we have

ΓI
ABΓ̃AC − Γ̃IACΓJ

AB = 2ΓI
ABΓ̃AC − 1

2
δC
BΓI

FGΓ̃JFG. (A.12)
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It is possible to derive identities involving ǫAB based on the relations between the basis

gamma matrices ΓI . In [33] Bagger and Lambert make use of the following identities

1

2
ǭCD
1 γνǫ2CDδ

A
B = ǭAC

1 γνǫ2BC − ǭAC
2 γνǫ1BC (A.13)

and

2ǭAC
1 ǫ2BD − 2ǭAC

2 ǫ1BD = + ǭCE
1 ǫ2DEδ

A
B − ǭCE

2 ǫ1DEδ
A
B

− ǭAE
1 ǫ2DEδ

C
B + ǭAE

2 ǫ1DEδ
C
B

+ ǭAE
1 ǫ2BEδ

C
D − ǭAE

2 ǫ1BEδ
C
D (A.14)

− ǭCE
1 ǫ2BEδ

A
D + ǭCE

2 ǫ1BEδ
A
D.

Both of these identities can be re-written in terms of identities involving the Majorana

spinors ǫI and the gamma matrices ΓI .

B Determination of surface term

In this appendix we show explicitly how to calculate the surface term V µ associated with

the Lagrangian (2.6). Only certain parts of the variation of the Lagrangian contribute to

the surface terms, namely those kinetic and coupling terms which upon variation contain

derivatives. Lets look at each part of the Lagrangian in turn.

B.1 Kinetic term

Lkinetic = −DµZ̄a
ADµZ

A
a − iψ̄AaγµDµψAa. (B.1)

Varying the kinetic terms one has

δLkinetic = −
1

︷ ︸︸ ︷

hb̄aDµ(δZ̄Ab̄)DµZ
A
a +

2
︷ ︸︸ ︷

hb̄aδÃ∗c̄
µ d̄

Z̄Ac̄DµZ
A
a

−
3

︷ ︸︸ ︷

DµZ̄a
ADµ(δZA

a ) +

4
︷ ︸︸ ︷

hdd̄DµZ̄Ad̄δÃ
c

µ dZ
A
c (B.2)

−
5

︷ ︸︸ ︷

iδψ̄AaγµDµψAa −
6

︷ ︸︸ ︷

iψ̄AaγµDµ(δψAa) +

7
︷ ︸︸ ︷

iψ̄AaγµδÃ b
µ aψAb

Inserting the supersymmetry transformations into the above one finds the following terms

1) = −iDµψ̄BaDµZ
A
a ǫAB

2) = +iǭABγµD
µZC

b Z̄Bd̄Z̄Cc̄ψAaf
abc̄d̄ − iψ̄B

ā γµZ
A
b Z̄Cc̄DµZ

C
a f

bac̄āǫAB

3) = −iǭABDµZ̄a
ADµψBa

4) = −iǭABγµDµZ̄Cc̄Z̄Bd̄Z
C
b ψAaf

abc̄d̄ + iψ̄B
b̄
γµD

µZ̄Cd̄Z
A
a Z

C
c f

cab̄d̄ǫAB (B.3)

5) = −iǭABDµZ̄
a
Bγ

µγνDνψAa − iǭABZ̄Cc̄Z̄Bd̄Z
C
b γ

µDµψAaf
abc̄d̄

− iǭCDγµDµψAaZ
A
c Z̄Db̄Z̄Cd̄f

cad̄b̄

6) = −iψ̄A
ā γ

µγνDµDνZ
B
a ǫBA − iψ̄AaγµDµ(ZC

d Z
B
b Z̄Cc̄)f

dbc̄āǫBA

− iψ̄A
ā γ

µDµ(ZC
d Z

D
b Z̄Ac̄)f

dbc̄āǫCD.
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We don’t include 7) above as this term contains no derivatives and therefore won’t con-

tribute to the surface terms.

B.2 Coupling terms

Lcoupling = L(1) + L(2) (B.4)

where

L(1) = −ifabc̄d̄ψ̄A
d̄
ψAaZ

B
b Z̄Bc̄ + 2ifabc̄d̄ψ̄A

d̄
ψBaZ

B
b Z̄Ac̄. (B.5)

L(2) =
i

2
εABCDf

abc̄d̄ψ̄A
d̄
ψB

c̄ Z
C
a Z

D
b − i

2
εABCDf cdāb̄ψ̄AcψBdZ̄CāZ̄Db̄. (B.6)

We will tackle each in turn

δL(1) = − i

1
︷ ︸︸ ︷

fabc̄d̄δψ̄A
d̄
ψAaZ

B
b Z̄Bc̄ −i

2
︷ ︸︸ ︷

fabc̄d̄ψ̄A
d̄
δψAaZ

B
b Z̄Bc̄

+ 2i

3
︷ ︸︸ ︷

fabc̄d̄δψ̄A
d̄
ψBaZ

B
b Z̄Ac̄ +2i

4
︷ ︸︸ ︷

fabc̄d̄ψ̄A
d̄
δψBaZ

B
b Z̄Ac̄ (B.7)

Inserting the supersymmetry transformations into this we have

1) = −iǭABγµDµZ̄Bd̄Z̄Cc̄Z
C
b ψAaf

abc̄d̄

2) = −iψ̄A
d̄
γµDµZ

C
a Z

B
b Z̄Bc̄f

abc̄d̄ǫCA

3) = 2iǭABγµDµZ̄Bd̄Z̄Ac̄Z
C
b ψCaf

abc̄d̄ (B.8)

4) = 2iψ̄A
d̄
γµDµZ

C
a Z

B
b Z̄Ac̄f

abc̄d̄ǫCB

For δL(2) we find

δL(2) =

5
︷ ︸︸ ︷

i

2
εABCDf

abc̄d̄δψ̄A
d̄
ψB

c̄ Z
C
a Z

D
b +

6
︷ ︸︸ ︷

i

2
εABCDf

abc̄d̄ψ̄A
d̄
δψB

c̄ Z
C
a Z

D
b

−

7
︷ ︸︸ ︷

i

2
εABCDf cdāb̄δψ̄AcψBdZ̄CāZ̄Db̄ −

8
︷ ︸︸ ︷

i

2
εABCDf cdāb̄ψ̄AcδψBdZ̄CāZ̄Db̄ (B.9)

Inserting the supersymmetry variations one finds

5) =
i

2
ǭCDγ

µDµZ̄Bd̄Z
C
a Z

D
b ψ

B
c̄ f

abc̄d̄ + iǭBCγ
µDµZ̄Dd̄Z

C
a Z

D
b ψ

B
c̄ f

abc̄d̄

6) =
i

2
ψ̄A

d̄
γµDµZ̄Ac̄Z

C
a Z

D
b f

abc̄d̄ǫCD + iψ̄A
d̄
γµDµZ̄Dc̄Z

C
a Z

D
b f

abc̄d̄ǫAC

7) =
i

2
ǭCDγµDµZ

B
c Z̄CāZ̄Db̄ψBdf

cdāb̄ + iǭBCγµDµZ
D
c Z̄CāZ̄Db̄ψBdf

cdāb̄ (B.10)

8) =
i

2
ψ̄Acγ

µDµZ
AZ̄CāZ̄Db̄f

cdāb̄ǫCD + iψ̄Acγ
µDµZ

D
b Z̄CāZ̄Db̄f

cdāb̄ǫAC ,

where in determining the above expressions we made use of the reality condition ǫAB =
1
2ε

ABCDǫCD .We also found the following epsilon tensor identity useful

εABCDεAEFG = + δB
E δ

C
F δ

D
G + δB

F δ
C
Gδ

D
E + δB

Gδ
C
Eδ

B
F

− δB
E δ

C
Gδ

D
F − δB

Gδ
C
F δ

D
E − δB

F δ
C
Eδ

B
G . (B.11)
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B.3 Terms in ǭAB

We now gather all those terms of the form ǭAB,

δLǭ = + iǭABγµD
µZC

b Z̄Bd̄Z̄Cc̄ψAaf
abc̄d̄ − iǭABDµZ̄a

ADµψBa

− iǭABγµDµZ̄Cc̄Z̄Bd̄Z
C
b ψAaf

abc̄d̄ − iǭABDµZ̄
a
Bγ

µγνDνψAa

− iǭABZ̄Cc̄Z̄Bd̄Z
C
b γ

µDµψAaf
abc̄d̄ − iǭCDγµDµψAaZ

A
c Z̄Db̄Z̄Cd̄f

cad̄b̄ (B.12)

− iǭABγµDµZ̄Bd̄Z̄Cc̄Z
C
b ψAaf

abc̄d̄ + 2iǭABγµDµZ̄Bd̄Z̄Ac̄Z
C
b ψCaf

abc̄d̄

+ iǭCDγµDµZ
B
c Z̄CāZ̄Db̄ψBdf

cdāb̄ + 2iǭBCγµDµZ
D
c Z̄CāZ̄Db̄ψBdf

cdāb̄

where in the last line we have combined terms in 7) and 8) by making use of the fact that

ǭCDγµψBd = −ψ̄Bdγ
µǫCD. All the terms of order ZZ̄Z̄ combine into two total derivatives.

Thus we are left with

δLǭ = +Dµ(iǭABγµZC
b Z̄Ac̄Z̄Bd̄ψCaf

abc̄d̄ − iǭABγµZC
b Z̄Bd̄Z̄Cc̄ψAaf

abc̄d̄)

− iǭABDµZ̄a
ADµψBa − iǭABDµZ̄

a
Bγ

µγνDνψAa (B.13)

We can write these last two terms as a total derivative, plus a piece proportional to the

gauge field strength. Thus we finally arrive at

δLǭ =Dµ(iǭABγµZC
b Z̄Ac̄Z̄Bd̄ψCaf

abc̄d̄ − iǭABγµZC
b Z̄Bd̄Z̄Cc̄ψAaf

abc̄d̄

− iǭABDµZ̄a
AψBa − iǭABDνZ̄

a
Bγ

νγµψAa) (B.14)

B.4 Terms in ǫAB

Gathering all the terms of the form ǫAB we find

δLǫ = − iDµψ̄BaDµZ
A
a ǫAB − iψ̄A

ā γ
µγνDµDνZ

B
a ǫBA

+ iψ̄B
b̄
γµD

µZ̄Cd̄Z
A
a Z

C
c f

cab̄d̄ǫAB − iψ̄B
ā γµZ

A
b Z̄Cc̄DµZ

C
a f

bac̄āǫAB

− iψ̄AaγµDµ(ZC
d Z

B
b Z̄Cc̄)f

dbc̄ā − iψ̄A
ā γ

µDµ(ZC
d Z

D
b Z̄Ac̄)f

dbc̄āǫCD (B.15)

− iψ̄A
d̄
γµDµZ

C
a Z

B
b Z̄Bc̄f

abc̄d̄ǫCA + 2iψ̄A
d̄
γµDµZ

C
a Z

B
b Z̄Ac̄f

abc̄d̄ǫCB

+ iψ̄A
d̄
γµDµZ̄Ac̄Z

C
a Z

D
b f

abc̄d̄ǫCD + 2iψ̄A
d̄
γµDµZ̄Dc̄Z

C
a Z

D
b f

abc̄d̄ǫAC

A simple re-labeling of the indices reveals that all the terms containing ZZZ̄ vanish iden-

tically leaving

δLǫ = −iDµψ̄BaDµZ
A
a ǫAB + iψ̄A

ā γ
µγνDµDνZ

B
a ǫAB (B.16)

and we can re-write this as a total derivative

δLǫ = Dµ(−iψ̄BaDµZ
A
a ǫAB) (B.17)

Combining the results of the previous two sub-sections we find,

δL = δLǭ + δLǫ = ∂µV
µ (B.18)

with V µ given by

V µ = − iǭABDµZ̄a
AψBa − iψ̄BaDµZA

a ǫAB − iǭABDν Z̄
a
Bγ

νγµψAa

− iǭABγµZC
b Z̄Bd̄Z̄Cc̄ψAaf

abc̄d̄ + iǭABγµZC
b Z̄Ac̄Z̄Bd̄ψCaf

abc̄d̄. (B.19)
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C Bagger-Lambert superalgebra calculations

In this section we calculate the supersymmetric variation of J0,I . Given the supercurrent

expression (3.6) one finds

δJ0,I = +

(a)
︷ ︸︸ ︷

Tr(ΓI
ABΓ̃JACγνγ0γρDνZ

B ,DρZ̄Cε
J) + Tr(Γ̃IABΓJ

ACγ
νγ0γρDνZ̄B ,DρZ

C)

−
(b)

︷ ︸︸ ︷

Tr(ΓI
ABγ

νγ0DνZ
B , NJAεJ) − Tr(N I

AΓ̃JACγ0γρ,DρZ̄Cε
J )

+ Tr(Γ̃IABγνγ0DνZ̄B , N
J
Aε

J) + Tr(N IAΓJ
ACγ

0γρDρZ
CεJ) (C.1)

+

(c)
︷ ︸︸ ︷

Tr(N I
Aγ

0, NJAεJ ) + Tr(N IAγ0, N
J
Aε

J) .

C.1 (a) terms

The (a) terms may be written as

(a) = − Tr((ΓI
ABΓ̃JAC + Γ̃IACΓJ

AB)γ0D0Z
B,D0Z̄Cε

J)

− Tr((ΓI
ABΓ̃JAC + Γ̃IACΓJ

AB)γiD0Z
B,DiZ̄Cε

J )

− Tr((ΓI
ABΓ̃JAC + Γ̃IACΓJ

AB)γiDiZ
B,D0Z̄Cε

J )

− Tr((ΓI
ABΓ̃JAC + Γ̃IACΓJ

AB)γ0DiZ
B,DiZ̄Cε

J) (C.2)

− Tr((ΓI
ABΓ̃JAC − Γ̃IACΓJ

AB)γijγ0DiZ
B,DjZ̄Cε

J ).

The first four terms can be further simplified by using the relation (A.9).

(a) = − 2δIJTr(γ0D0Z
B,D0Z̄Bε

J ) − 2δIJTr(γ0DiZ
B,DiZ̄Bε

J )

− 2δIJTr(γiD0Z
B ,DiZ̄Bε

J ) − 2δIJTr(γiDiZ
B,D0Z̄Bε

J) (C.3)

− Tr((ΓI
ABΓ̃JAC − Γ̃IACΓJ

AB)γijγ0DiZ
B,DjZ̄Cε

J ).

C.2 (b) terms

The (b) terms may be written as

(b) = − 2δIJTr(DiZ̄B , [Z
D, ZB ; Z̄D]γ0γiεJ ) + 2δIJTr(DiZB , [Z̄D, Z̄B ;ZD]γ0γiεJ )

+ Tr((ΓI
DEΓ̃JAC + Γ̃IACΓJ

DE)[ZD, ZE; Z̄A]γ0γi,DiZ̄Cε
J)

− Tr((ΓI
ABΓ̃JCD + Γ̃ICDΓJ

AB)[Z̄C , Z̄D;ZA]γ0γi,DiZ
BεJ)

+ Tr((ΓI
ABΓ̃JAC − Γ̃IACΓJ

AB)[ZD, ZB; Z̄D],D0Z̄Cε
J)

+ Tr((ΓI
ABΓ̃JAC − Γ̃IACΓJ

AB)[Z̄D, Z̄C ;ZD],D0Z
BεJ) (C.4)

− Tr((ΓI
ABΓ̃JAC − Γ̃IACΓJ

AB)[ZD, ZE; Z̄A],D0Z̄Cε
J )

− Tr((ΓI
ABΓ̃JAC − Γ̃IACΓJ

AB)[Z̄C , Z̄D;ZA],D0Z
BεJ)
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The terms involving D0 can be greatly simplified by using (A.14). After a bit of rearrange-

ment and relabeling we can write the (b) terms as

(b) = + 2δIJTr(DiZ̄B , [Z
D, ZB ; Z̄D]εijεJ) − 2δIJTr(DiZB , [Z̄D, Z̄B ;ZD]εijεJ)

+ Tr(Γ
CD(IJ)
AB DiZ̄B, [Z̄C , Z̄D;ZA]εijγjεJ) − Tr(Γ

CD(IJ)
AB DiZ̄D[ZA, ZB ; Z̄C ]εijγjεJ )

− Tr(Γ̃
AE[IJ ]
DE D0Z̄C , [Z

D, ZC ; Z̄A]εJ ) − Tr(Γ̃
AE[IJ ]
DE D0Z

C [Z̄A, Z̄C ;ZD]εJ), (C.5)

where

Γ
CD(IJ)
AB = ΓI

ABΓ̃JCD + Γ̃ICDΓJ
AB; (C.6)

Γ̃
A[IJ ]
D = ΓI

DEΓ̃JAE − Γ̃IAEΓJ
DE , (C.7)

and we have used the fact that in 3 dimensions γij ∝ εij . We have also used the fact that

γ0γi = −εijγ012 and γ012εJ = εJ .

C.3 (c) terms

The (c) terms may be written as

(c) = − 2δIJTr([ZC , ZB; Z̄C ], [Z̄F , Z̄B ;ZF ])εJ

− Γ
EF (IJ)
AB Tr([ZC , ZB ; Z̄C ], [Z̄E , Z̄F ;ZA])εJ

− Γ
EF (IJ)
AB Tr([ZA, ZB ; Z̄E ], [Z̄C , Z̄F ;ZC ])εJ (C.8)

+ Γ
EF (IJ)
AB Tr([ZA, ZB ; Z̄C ], [Z̄E , Z̄F ;ZC ])εJ .

We can make use of the fact that the potential is

V =
2

3
Tr([ZC , ZD; Z̄B ], [Z̄C , Z̄D;ZB]) − 1

3
Tr([ZB , ZD; Z̄B ], [Z̄F , Z̄D;ZF ]) (C.9)

to write (c) as

(c) = − 2δIJ (V − V1)ε
J

− Γ
EF (IJ)
AB Tr([ZC , ZB ; Z̄C ], [Z̄E , Z̄F ;ZA])εJ

− Γ
EF (IJ)
AB Tr([ZA, ZB ; Z̄E ], [Z̄C , Z̄F ;ZC ])εJ (C.10)

+ Γ
EF (IJ)
AB Tr([ZA, ZB ; Z̄C ], [Z̄E , Z̄F ;ZC ])εJ ,

where

V1 =
2

3
Tr([ZC , ZD; Z̄B ], [Z̄C , Z̄D;ZB]) − 4

3
Tr([ZC , ZB ; Z̄C ], [Z̄E , Z̄B ;ZE ]) (C.11)
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C.4 δJ0

We can combine (a), (b) and (c) terms

δJ0,I = − 2δIJT 0
µγ

µεJ + 2δIJV1γ
0εJ

+ 2δIJ (Tr(DiZ̄B , [Z
D, ZB ; Z̄D]) − Tr(DiZ

B, [Z̄D, Z̄B ;ZD])εijγjεJ

− Γ
C[IJ ]
B Tr(DiZ

B ,DjZ̄C)εijγ0εJ

− Γ
C[IJ ]
B (Tr(D0Z̄A, [Z

B , ZA; Z̄C ]) + Tr(D0Z
A, [Z̄C , Z̄A;ZB]))εJ

+ Γ
CD(IJ)
AB (Tr(DiZ̄B, [Z̄C , Z̄D;ZA]) − Tr(DiZ̄D[ZA, ZB ; Z̄C ]))εijγjεJ

− Γ
EF (IJ)
AB Tr([ZC , ZB ; Z̄C ], [Z̄E , Z̄F ;ZA])εJ

− Γ
EF (IJ)
AB Tr([ZA, ZB ; Z̄E ], [Z̄C , Z̄F ;ZC ])εJ

+ Γ
EF (IJ)
AB Tr([ZA, ZB ; Z̄C ], [Z̄E , Z̄F ;ZC ])εJ ,

where we have used

T00 = Tr(D0Z
B,D0Z̄B) + Tr(DiZ

B,DiZ̄B) + V ; (C.12)

T0i = Tr(D0Z
B,DiZ̄B) + Tr(DiZ

B,D0Z̄B). (C.13)

D Potential

In this appendix we show the equivalence of the Bagger-Lambert and ABJM potential.

The Bagger-Lambert potential is given by

V =
2

3
Tr(ΥCD

B , ῩB
CD) (D.1)

where

ΥCD
B = [ZC , ZD; Z̄B ] − 1

2
δC
B [ZE, ZD; Z̄E ] +

1

2
δD
B [ZE, ZC ; Z̄E ]. (D.2)

We can define the inner product as

Tr(X,Y ) = tr(X†Y ) (D.3)

where † denotes the transpose conjugate and tr denotes the ordinary matrix trace. Thus

(ΥCD
B )† = [ZD†, ZC†; Z̄†

B ] − 1

2
δC
B [ZE†, ZD†, Z̄†

E ] +
1

2
δD
B [ZE†, ZC†; Z̄†

E ] (D.4)

ῩB
CD = [Z̄C , Z̄D;ZB ] − 1

2
δB
C [Z̄E , Z̄D;ZE] +

1

2
δB
D[Z̄E , Z̄C ;ZE]. (D.5)

Making use of the above information one finds that

V =
2

3
Tr(ΥCD

B , ῩB
CD) (D.6)

=
2

3
tr((ΥCD

B )†ῩB
CD) (D.7)

=
2

3
tr

(

[ZD†, ZC†; Z̄†
B ][Z̄C , Z̄D;ZB ] +

1

2
[ZE†, ZC†; Z̄†

E ][Z̄B , Z̄C ;ZB ]

)

. (D.8)
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For the particular choice

[X,Y ;Z] = λ(XZ†Y − Y Z†X) (D.9)

it was shown by Bagger and Lambert that the N = 6 ABJM potential is recovered. In-

serting (D.9) into (D.8) one finds

V = λ2tr

(

− 1

3
ZE†Z̄EZ

C†Z̄CZ
B†Z̄B − 1

3
ZC†Z̄EZ

E†Z̄BZ
B†Z̄C

− 4

3
ZD†Z̄BZ

C†Z̄DZ
B†Z̄C + 2ZD†Z̄BZ

C†Z̄CZ
B†Z̄D

)

. (D.10)

Comparing with

V =
4π2

k2
tr

(

− 1

3
XAXAX

BXBX
CXC − 1

3
XAX

AXBX
BXCX

C

− 4

3
XAX

BXCX
AXBX

C + 2XAXBX
BXAX

CXC

)

(D.11)

we see that the two expressions are equivalent given the redefinitions ZA† → XA and

Z̄A → XA, as well as λ = 2π/k.
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